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A numerical technique has been developed for integrating the one-dimensional steady state 
premixed laminar flame equations. A global finite difference approach is used in which the 
nonlinear difference equations are solved by a damped-modified Newton method. An assumed 
temperature profile helps to generate a converged numerical solution on an initial coarse grid. 
Mesh points are inserted in regions where the solution profiles exhibit high gradient and high 
curvature activity. These features are discussed and illustrated in the paper, and the method is 
used to calculate the temperature and species protiles of several laboratory flames. 

1. INTRODUCTION 

Laminar premixed flames (flat flames) are commonly used to investigate chemical 
kinetics processes that are important in combustion. Because of its essentially one- 
dimensional nature, the flat flame is particularly useful in constructing computational 
models. In close conjunction with experimental data, these models can provide 
detailed information on flame structure and elementary reaction paths. The 
underlying reason for working with these models is that they will ultimately enable 
one to propose measures that can reduce pollutant formation and thus provide 
cleaner combustion. For example, flat flame studies can aid in understanding the 
production of nitric oxide (NO) in ammonia-oxygen (NH,-0,) flames and in the 
prediction of the onset of soot formation in acetylene-oxygen (C,H,-0,) flames ] 11. 

Premixed laminar flames are obtained in the laboratory (see Fig. 1) by flowing 
premixed fuel and oxidizer through a cooled porous plate. Since in general there is a 
positive temperature gradient at the origin due to heat transfer from the burning 
mixture back to the burner, the flame is nonadiabatic. (In the adiabatic case, the 
flame sits infinitely far from the burner with a zero temperature gradient at the 
burner.) Because the flat flame is an excellent configuration on which to apply 
diagnostic techniques, these flames are common in combustion laboratories and, as a 
result, a great deal of experimental data is available. In addition, one can adjust the 
fuel-to-oxidizer ratio to form fuel-rich or fuel-lean flames and adjust the pressure to 
narrow or widen the flame zone. 

The calculation of laminar premixed flames was one of the first combustion 
problems to be attacked by both analytical and numerical techniques. Although the 
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FIG. 1. Schematic of nonadiabatic premixed laminar flame. The flame gases expand as a function of 
the height x above the burner; the angle a is the expansion angle. 

problem has a very simple flow configuration, the numerical solution of the governing 
equations has proved to be difficult and is still being actively pursued. In this paper, 
we develop a numerical method which enables us to integrate the steady state, 
laminar, one-dimensional, premixed flame equations. A global finite difference 
approach is used in which the nonlinear difference equations are solved by a damped- 
modified Newton method. The combination of an assumed temperature profile and 
upwind differencing of the convective terms helps to generate a converged numerical 
solution to the species equations on an initial coarse grid. This solution is then used 
as an initial starting estimate for the species, or energy and species, equations on a 
liner mesh. Grid points are inserted in regions where the solution profiles exhibit high 
gradient and high curvature activity. 

In the next section, we review the approaches that have been used to obtain 
numerical solutions of the premixed flame equations. In Section 3, we introduce some 
notation and formulate the premixed flame problem as a nonlinear two-point 
boundary value problem. In Section 4 we present the boundary value method we have 
used to solve the flame equations and Section 5 contains the results of applying our 
method to several laboratory flames. 

2. BACKGROUND 

One of the first attempts to solve the premixed flame equations was by 
Hirschfelder and his co-workers [2]. They applied a combination of linear asymptotic 
analysis and a numerical shooting method to obtain temperature and species profiles 
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together with the adiabatic flame speed for several simple flames. In 1956, Spalding 
[3] solved the equations governing the adiabatic problem by considering the problem 
as a relaxation of a time-dependent system of nonlinear parabolic partial differential 
equations. Assuming initial profiles for the temperature and species concentrations, 
Spalding discretized the equations using standard finite difference techniques; the 
solution was advanced in time by a marching procedure until steady state profiles 
were obtained. Time-dependent procedures have since been used in adiabatic 
problems, for example, by Adams and Cook [ 4 ] in studying the effect of pressure on 
the mechanism and speed of hydrazine flames, by Dixon-Lewis [ 5 ] in studying 
hydrogen-oxygen flames and by Westbrook and Dryer 16, 71 in predicting laminar 
flame properties of methanol-air mixtures. A time-dependent method for the general 
nonadiabatic case was introduced in 1971 by Spalding and Stephenson [ 8 ]. In a 
somewhat related approach, Bledjian [9] employed a method of lines technique to 
solve the adiabatic problem. In this method, the spatial coordinate is discretized and 
the original nonlinear parabolic mixed initial-boundary value problem is reduced to a 
set of nonlinear first-order initial value problems. Sophisticated initial value problem 
integrators can then be used to integrate the resulting ordinary differential equation 
system. More recently, Margolis [lo] has used a method of lines technique employing 
spline collocation in the spatial variable to solve the equations governing the 
adiabatic and nonadiabatic cases. 

Although the literature contains numerous examples of the use of time-dependent 
methods to investigate flat flame structure, there are relatively few references to the 
solution of the flame equations by steady state or time-independent methods. 
Dixon-Lewis [ 1 l] has applied a combination of time-dependent and time-independent 
methods in calculating the structure of certain flames and Wilde ] 121 and Kendall 
and Kelly [ 131 have been successful in applying a strictly time-independent method 
to solve the premixed flame equations. Wilde solved the governing equations by 
employing a combination of quasilinearization and orthonormalization, where the 
fundamental solution matrix was constructed analytically over appropriate intervals. 
Both Wilde and Kendall and Kelly have also applied finite difference methods to 
solve the governing equations. Our work is an extension of the approaches used by 
Wilde, and Kendall and Kelly. 

Although time-dependent methods have been used with greater frequency and with 
greater success in solving premixed laminar flames than have steady state methods, 
the slow relaxation of the time-dependent solution to steady state can make parameter 
studies employing complicated nonlinear transport properties extremely time 
consuming. By dealing directly with the governing equations, however, steady state 
methods have the potential to solve the flame equations in a fraction of the time taken 
by time-dependent methods. 

DQjficulties with Using Steady State Methods 

Of the various methods for solving two-point boundary value problems, those that 
have been implemented in most of the currently available two-point boundary value 
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problem software can be classified as either initial value (shooting type) methods 
[ 14-16 ] or global methods such as finite differences [ 171 and collocation 1181. 

The availability of initial value problem software and the relative ease of 
implementing shooting type methods have made them particularly appealing for 
numerically solving two-point boundary value problems. In addition, with variable 
step initial value problem integrators, one can accurately resolve rapidly changing 
components of the dependent solution variables. For these reasons, many of the early 
attempts to solve the premixed flame equations by steady state methods [ 2, 11, 12 ] 
incorporated some form of initial value technique. 

Shooting methods are based upon the equivalence existing between the given 
boundary value problem and a related initial value problem. To use shooting methods 
effectively, it is essential that small changes in the initial conditions of the initial 
value problem should result in small changes in the initial value solution. Such 
problems are considered to be stable or well posed. Problems which do not exhibit 
such behavior are said to be ill-conditioned or unstable. This type of instability is 
inherent in the problem and does not depend upon the initial value problem 
integrator, although it is possible that the numerical integrator itself may be a source 
of instability. Techniques such as multiple shooting [ 191, continuation [ 201, and 
orthonormalization [ 16) have all been used to reduce the sensitivity of such 
problems to small changes in the initial conditions. 

When shooting methods (such as the method of adjoints or the method of 
complementary functions 1201) are implemented in practice, a set of linear equations 
must be solved for a set of missing initial conditions (linear problems) or for 
corrections to a set of missing initial conditions (nonlinear problems). For the linear 
equations to have a unique solution, it is necessary that the columns of the coefficient 
matrix of the system be numerically linearly independent. Although the columns of 
the matrix of coefficients formed by the method of adjoints or the method of 
complementary functions are linearly independent initially, in numerically sensitive 
problems, they may rapidly become numerically linearly dependent as the integration 
proceeds. This is particularly true when the eigenvalues of the n x n matrix A(r) in 
linear problems of the form ,Y’ = A(t)y + g(t), or the n x n Jacobian matrix 
J( ,r) = ?f/;ly in nonlinear problems of the form y’ =f(t, y), have eigenvalues well 
separated in numerical value. In both problems y, y’, g, and f are n-vectors. 

In a recent paper, Margolis (2 1 ] shows that for a simple flame involving three 
species, temperature, and a global two step reaction mechanism, an asymptotic 
analysis reveals solutions of the premixed flame equations which both grow and 
decay exponentially. The exponential solutions result from the presence of locally 
positive and locally negative eigenvalues in the coefficient matrix of the linearized 
flame equations. Margolis shows that some of these eigenvalues are proportional to 
the square root of expressions similar to the rate constants in Eq. (3.15). Although 
the solutions corresponding to locally positive eigenvalues are unphysical, they can 
be excited by round-off error when the premixed flame problem is solved by an initial 
value method. Even though the analysis carried out in [Zl ] was applied to a simple 
model flame, it is reasonable to expect that a similar analysis applied to laboratory 
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flames with complex chemical kinetics mechanisms will produce analogous results. In 
particular, for a fuel-rich, low pressure hydrogen-oxygen (H,-0,) flame 1221, we 
have found the eigenvalues of the coefftcient matrix of the variational equations to be 
as large as 500. A simple analysis shows that if such a flame were solved by a 
multiple shooting method on a 16 digit machine, we could expect on the order of one 
hundred shooting points. Our numerical experience has indeed confirmed such a 
result. 

From the above discussion, it is clear that the solution of premixed flame problems 
by initial value methods is not the way to proceed. If premixed flame structure is to 
be calculated using steady state methods, the methods must be global. Finite 
differences and collocation are two logical choices. These methods incorporate both 
the specified initial and terminal conditions into the set of linear or nonlinear 
equations that must be solved to obtain approximations to the soluion of the original 
differential equations. Experience has shown that they can be used with considerable 
success in solving numerically sensitive two-point boundary value problems 
(20,23,24]. 

Two currently available global two-point boundary value problem codes are 
PASVA3 [ 171 and COLSYS [18]. The PASVA3 code, written by Lentini and 
Pereyra, is a finite difference code employing deferred corrections. The COLSYS 
code, as implemented by Ascher, Christiansen, and Russell, is a collocation package 
designed for solving mixed order systems of multipoint boundary value problems. In 
addition to being able to handle numerically sensitive problems, both these codes 
adaptively adjust the grid spacing so as to be able to resolve high gradient activity of 
the dependent solution components. 

In the course of our work, we applied both PASVA3 and COLSYS to a very 
simple three species and temperature flame. The difficulty in obtaining a converged 
numerical solution for our prescribed initial solution estimates combined with the 
large amount of storage overhead needed to solve the test problem made it clear that 
the usefulness of these codes in determining the structure of laboratory flames would 
be minimal. We believe, however, that in many other applications the use of general 
purpose codes such as PASVA3 and COLSYS is often preferable to writing one’s 
own code. 

From the above discussion, it is clear why steady state methods have not been 
applied with much success in solving premixed laminar flames. In spite of these 
difficulties, we feel that the potential advantages to be gained in using such methods 
make their investigation well worthwhile. The method that we develop in this paper 
helps to eliminate many of the difficulties that have been associated with using steady 
state methods to solve the premixed flame equations. 

3. PROBLEM FORMULATION 

Our formulation of the burner-stabilized flame problem closely follows that 
originally proposed by Hirschfelder and Curtiss (251. The physical problem is 
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illustrated in Fig. 1. A premixed fuel and oxidizer mixture flows through a cooled 
porous plug burner. As the mixture emerges from the burner, it passes through a 
reaction zone in which chemical changes take place. Further downstream, it even- 
tually emerges in a burned state. Our goal is to be able to predict theoretically the 
mass fractions Yk, k = 1,2,..., N, of the species under investigation, and T, the 
temperature of the combustible mixture, as functions of the height x above the burner. 
Our formulation of the problem assumes the following: (i) The flow is one- 
dimensional and the region under consideration is the semi-infinite interval 
0 < x < co. (ii) For normal laboratory flames, the flow velocities are small and hence 
viscous effects are negligible. This assumption allows the momentum equation to be 
integrated and replaced by the condition that the thermodynamic pressure p is 
constant. (iii) We allow for the possible quasi-one-dimensional expansion of the flame 
gases, where A(x) represents the cross-sectional area of the flame as a function of the 
height x above the burner. (iv) Body forces are negligible. (v) Radiative heat transfer 
is negligible. (vi) The diffusion of heat due to concentration gradients (Dufour effect) 
is negligible. 

With approximations (it(vi), the equations governing the structure of a steady 
one-dimensional isobaric flame are: 

(4 continuity, 

ti = puA = const., (3.1) 

(b) conservation of species, 

hi(dY,/dx) = -(d/dx)@A Yk V/J + &A W,, 

(c) conservation of energy, 

k = 1, 2 ,..., N, (3.2) 

(d) equation of state, 

p = @p/R T, (3.4) 

with the boundary conditions: 

T(O) = T,, 

y, + @ yk V,A/ti) = Ek, k = 1, 2 ,..., N, 

(3.5) 

(3.6) 

dT/dx = 0, as x-co, (3.7) 

dYJdx = 0, as x+ co, k= 1, 2 ,..., N. (3.8) 

In addition to the variables already defined, u denotes the velocity of the fluid 
mixture, p the density of the fluid mixture, W, the molecular weight of the kth 



78 MITCHELL D. SMOOKE 

species, w the mean molecular weight of the mixture, R the universal gas constant, A 
the thermal conductivity of the mixture, C,, the specific heat capacity of the mixture 
at constant pressure, C,, the specific heat capacity at constant pressure of the kth 
species, G, the rate of production of the kth species by chemical reaction, h, the 
specific enthalpy of the kth species with respect to the mixture of remaining species, 
ck the known incoming mass flux fractions, and Vk the binary diffusion velocity of 
the kth species. 

The diffusion velocity is divided into three parts 

v, = Ilk + w/( $ UC, k = 1, 2 ,..., N, (3.9) 

where uk is the ordinary diffusion velocity due to mole fraction gradients, wk is the 
thermal diffusion velocity, and v, is a constant diffusion velocity (independent of 
species). We approximate L’~ by the Curtiss-Hirschfelder [26] approximation. We 
write 

ok = -(l/X,) D, VX,, k = 1, 2 ,..., N, (3.10) 

where X, is the mole fraction of the kth species and D, is related to the binary 
diffusion coefficients !Zjk through the relation 

(3.11) 

Thermal diffusion is incroporated into the mode1 only in the trace light component 
limit. The thermal diffusion velocity is given by 

wk = (Dk&/Xk)(l/T) dTldx> (3.12) 

where tD, is the thermal diffusion coefficient of species k. We only apply Eq. (3.12) 
for low molecular weight species such as H, H,, or He. The constant diffusion 
velocity u, is introduced in order to satisfy the condition 

(3.13) 

which must be satisfied if mass is guaranteed to be conserved. Upon making use of 
Eqs. (3.9) and (3.13) we have 

N 

u, = - 1 yk(wk + uk). 

k=l 

(3.14) 

The transport mode1 we use is essentially the same as that recommended by Coffee 
and Heimerl (271. The multicomponent conductivity is computed from the single 
component conductivities using Wilke’s semiempirical formula 1281, and an approx- 
imate Eucken-Hirschfelder correction for polyatomic species is incorporated in the 
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single component conductivities in the manner followed by Svehla (291. The thermal 
diffusion coefficients are calculated using the thermal diffusion ratio discussed in 
Chapman and Cowling [30]. 

The production rate Gii, for the kth species can be written in the form 

where $,(vjpk) is the stoichiometric coefficient of species k appearing as a reactant 
(product) in reversible reaction j, j= 1, 2,..., m. The function k{(kj’) is the rate 
constant for the forward (reverse) path of reaction j. We assume k{ has the following 
modified Arrhenius temperature dependence: 

k!=AfT$&/RT) 
J J 3 (3.16) 

and similarly for kJ. The reverse rate constants k,f can be written in terms of the 
forward rate constants and the equilibrium constants kj’ by 

ki’ = k;/kj’ . (3.17) 

The pre-exponential factor A{, the exponent /I;, the activation energy E{, and similar 
expressions for the reverse reaction quantities can be compiled from published 
experimental work. 

4. METHOD OF SOLUTION 

We recall that the premixed flame problem is formulated as a nonlinear two-point 
boundary value problem on the semi-infinite interval 0 < x < co. If the problem were 
linearized about the burned state values of the temperature and the species mass 
fractions (Tb and Yi, k = 1, 2 ,..., N), then we would say that the point x = 00 is a 
singularity of the second kind having rank one. The most common approach to 
handle the point x = co is to solve the governing equations on the finite interval 
0 ,< x <L for some number L < co with the boundary conditions at co imposed at 
x=L. 

In recent years, several papers have been written which discuss the choice of the 
proper asymptotic boundary conditions when a two-point boundary value problem 
posed on an infinite interval is solved on a finite interval [3 l-331. In all of these 
projection type methods, an a priori knowledge of the asymptotic value of the 
dependent solution vector is required. In adiabatic flames, we can obtain the burned 
state for both the temperature and the species under investigation. This information, 
however, is generally not known for burner-stabilized flames. As such, we have 
chosen to apply the zero flux boundary conditions at x = L. The appropriate value of 
L can be obtained from experiment or from a small amount of numerical com- 
putation. 

581/48/l-6 
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Newton’s Method 

Our goal is to obtain a discrete solution of Eqs. (3.1~(3.8) on the mesh .H, 

A= {O=x,<x, < .** <x,tf=L}, (4.1) 

where hj = xj - xj- i, j = 1, 2 ,..., M, and h = max, <j<M hj. 
We approximate the spatial derivatives in Eqs.“(i.lt(3.8) using finite difference 

expressions. In particular, the diffusion terms in Eqs. (3.2) and (3.3) are approx- 
imated using central differences-that is, we write 

where for a continuous mapping g: [O, L 1 -+ RI, we deline g’ = g(xj), j = 0, l,..., M, 
and 

g’ ‘+“2 = (g’” + g’)/2, j = 0, 1 ,..., M - 1, (4.3) 

ag”‘=(g”‘-gi)/hj+l, j=O, l,..., M- 1. (4.4) 

The convective derivatives and the remaining terms which contain first derivatives are 
all differenced using upwind difference expressions, We write 

&! ax lxjz%pi, j= 1,2 ,..., M. 

By replacing the continuous differential operators in the governing equations by 
expressions similar to those in Eqs. (4.2~(4.5), we convert the problem of finding an 
analytic solution of Eqs. (3.1)-(3.8) to one of finding an approximation to this 
solution at each point xj of the mesh ..1. We seek the solution Z,* of the nonlinear 
system of difference equations 

F(ZZ) = 0. (4.6) 

In this notation, F is an (N + l)(M + 1) vector in which we order the components 
such that the first (N + 1) components correspond to the boundary conditions at 
x0 = 0. The next (N + l)(M - 1) components correspond to the energy and species 
equations at the interior nodes xj, j = 1, 2,..., M - 1. The last (N + 1) components 
correspond to the boundary conditions at X~ = L. 

For an initial solution estimate Z” which is sufficiently close to Zz, the system of 
nonlinear equations (4.6) can, in principle, be solved by a variety of nonlinear 
equation methods. A common approach is to apply a version of Newton’s method, 
which we write in the form 

Z ‘+I = Z” - A”J-‘(Z”) F(Z”). (4.7) 
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Here 2” denotes the nth solution iterate, 2” the nth damping parameter (0 < 1 < l), 
and J(Z”) = S(Z”)/aZ, the (N + l)(M + 1) x (N + l)(M + 1) Jacobian matrix. In 
practice, (4.7) is rewritten in the form 

J(Z”)(Z” + ’ - zy = -nnF(Z”), (4.8) 

where at each iteration a system of linear equations is solved for corrections to the 
previous solution vector. For problems in which the cost of forming-either 
analytically or numerically-and then factoring the Jacobian matrix is a significant 
part of the cost of the total calculation, it is natural to consider applying a modilied 
version of Newton’s method in which the Jacobian is re-evaluated only periodically. 
In determining premixed flame structure, we have found that the numerical evaluation 
of the Jacobian matrix accounts for 90-95% of the total CPU time for a single 
Newton step. As a result, we have implemented the modified Newton method 

J(ZO)(Z” + ’ - Z”) = -F(Z”), n = 0, 1) 2 )...) (4.9) 

where the Jacobian is evaluated at the initial solution estimate. The immediate 
problem one faces when applying the modified method is how to determine whether 
the sequence of successive modified Newton iterates is converging at a fast enough 
rate. If the rate of convergence is too slow, we want to revert back to a full Newton 
method and make use of new Jacobian information and possibly employ a damping 
strategy. An estimate which enables us to determine an upper bound for the size of 
the sequence of modified Newton iterates, assuming the Kantorovich hypotheses are 
satisfied, has been derived in 1341. We apply this result when implementing the 
method in Eq. (4.9) in the solution of premixed flames. As a result, if in the course of 
a calculation we determine the size of AZ” = 2”’ ’ - Z”, n = 1, 2,..., to be larger than 
the value the estimate in 1341 predicts, we form a new Jacobian and restart the 
modified Newton algorithm with a new initial solution estimate given by Z”. 

Although the use of a damped-modified Newton method in the numerical solution 
of two-point boundary value problems is not unusual, there are several features of our 
implementation which warrant further discussion. 

Assumed Temperature Profile 

We note that if the premixed flame problem defined in Eqs. (3.1~(3.8) is solved 
with an assumed temperature profile, the energy equation can be replaced by 
T = T(x), where T(x) is known. One advantage to such a procedure is that if an 
experimental profile is available, substituting this profile for the energy equation 
produces a solution of the species Eqs. (3.2), (3.6), (3.8) that is a better represen- 
tation of the chemistry actually occurring in the flame than if the species equations 
were solved coupled with the energy equation. The reason is that in actual laboratory 
applications there can be distributed heat losses (usually radiative) and the 
temperature predicted by solving the full set of flame equations is often not a good 
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representation of the temperature profile actually obtained in the laboratory (see 
Section 5). In addition, in cases where one requires a solution to the full premixed 
flame equations-predicted temperature and species profiles-the often severe 
difficulties associated with the convergence of Newton’s method can be largely 
circumvented by first solving the species equations with a specified temperature 
profile and then solving the full problem with this solution as an initial estimate. The 
convergence difficulties can be attributed to the exponential nonlinearities occurring 
in the chemical production terms r4’k, k = 1, 2 ,..., N. The specification of a 
temperature profile eliminates the exponential nonlinearities in temperature, and the 
resulting chemical production terms contain nonlinearities that are at most algebraic 
in the species concentrations. 

Upwind Dijferencing 

If a consistent, stable, and hence convergent finite difference method is applied to 
the flame equations, we anticipate the converged numerical solution Z,* to approx- 
imate closely the analytic solution at the given mesh points, providing the mesh 
spacing is small enough. For a mesh with coarse grid spacing, however, the 
converged numerica! solution may not accurately resolve the analytic solution at the 
grid points. As a result, the analytic solution may be a poor initial solution estimate 
on a coarse grid. To increase the likelihood of convergence of the Newton iteration, it 
is important that the initial solution estimate on the given grid closely approximate 
the converged numerical solution on that grid. 

The region in which the fuel and the oxidizer react is called the flame zone or 
burn region. In the flames we have studied, the flame zone is extremely narrow and 
the temperature and species profiles exhibit sharp gradients in this region. To increase 
the likelihood of convergence of the Newton iteration, we need an initial solution 
estimate which is a good approximation to the converged numerical solution on the 
fine mesh. For the flames we have studied, obtaining an accurate fine-grid initial 
solution estimate is difficult. Ideally, we would like to be able to specify an initial 
solution estimate in which an accurate specification of the details of the flame zone is 
not crucial to the convergence of Newton’s method. The ability to obtain such an 
initial solution estimate is intimately related to how the convective derivatives are 
approximated and on the size of the initial grid spacing. 

We recall that the convective derivatives in Eqs. (3.1~(3.8) have all been 
differenced using upwind difference approximations as opposed to second-order 
centered difference expressions. In the early stages of our work, however, we applied 
centered difference expressions to the convective derivatives in the governing 
equations. In a number of problems we were unable to obtain a converged species or 
a converged energy-species solution. In both cases, Gaussian and cubic S-shaped 
polynomials were the initial solution estimates (see below). When upwind difference 
expressions were used for the convective terms, however, we obtained converged 
species and converged energy-species solutions in almost all the poblems considered. 
In fact, fewer Newton iterations were required when the problems were solved on an 
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extremely coarse mesh (4 or 5 subintervals) than on a relative fine mesh (40 to 50 
subintervals). 

In addition to thermodynamic properties, a fluid is described by transport proper- 
ties-viscosity, thermal diffusivity, and mass diffusivity. They describe the transport 
of momentum, heat, and mass, respectively. Since the flow velocities are small, we 
have neglected viscous effects and hence we are only concerned with the transport of 
heat and mass. Thermal diffusivity in a flame tends to spread out heat. Mass 
diffusivity tends to spread out mass. The thermal diffusion rate is given by L/Cp and 
the mass diffusion rate is given by pD,, k = 1, 2,..., N. Due to the truncation error in 
the upwind difference approximations for the convective terms in Eqs. (3.1)-(3.8), we 
are, in effect (through first order in h), solving the original flame equations with an 
extra diffusion term, the size of which is proportional to puhJ2, as opposed to 

Pu(hj+ 1 - hj)/2 for centered differences. As a result, the numerical solutions can be 
broadened depending on the size of puhj/2 or pu(hj+ , - hi)/2 compared to A/Cp and 

PD,, k = 1, 2,..., N. For problems in which the numerical diffusivity is large 
compared to the actual diffusion rates, we expect the broadening to be significant. 
The idea of broadening the solution profiles can be looked upon as making the 
numerical solution more nearly constant. As a result, one expects to have less 
difficulty in specifying an initial solution estimate for which the Newton iteration 
converges than if the high gradient behavior of the numerical solution is preserved. In 
addition, for a mesh in which the size of adjacent intervals is fairly constant, the 
quantity puhj/2 can be significantly larger than pu(hj+ , - h,i)/2. As a result, if the 
solution profiles can be broadened by the use of numerical diffusion, we expect the 
maximum amount of broadening to be obtained on a coarse mesh with upwind 
convective derivatives. 

Once a solution has been obtained on a coarse mesh, we want to use this solution 
as an initial solution estimate on a finer mesh with the ultimate goal of being able to 
resolve accurately the high gradient behavior of the temperature and species profiles 
in the flame zone. The idea of solving a problem on an initial coarse grid, inter- 
polating the solution to a finer grid, and using the result as an initial estimate to the 
solution on a finer grid, has been applied by various authors (e.g., 135, 361). 
Although most of the applications have centered in the realm of elliptic partial 
differential equations, ideas along these lines have been used in solving two-point 
boundary value problems as well (e.g., [ 18, 371). Intimately related to this set of ideas 
is the question of how to determine adaptively the liner mesh. 

Adaptive Gridding 

We recall from Section 3 that one of the advantages in using an initial value 
problem method to solve two-point boundary value problems was the adaptive mesh 
capability of the initial value solver. In such methods, the solution is monitored and 
the step size appropriately chosen as the integration proceeds. Global finite difference 
or collocation methods, on the other hand, require that a mesh be determined before 
the calculation proceeds. 
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During the last fifteen years, a variety of methods have been developed which 
attempt to choose optimal grid spacings on which to solve two-point boundary value 
problems. As Kautsky and Nichols (381 point out, many of these adaptive mesh 
selection procedures can be interpreted as equidistributing a positive weight function 
on a given interval. Essentially, one attempts to determine a mesh .H such that the 
weight function achieves a given constant value over each subinterval. Among the 
various approaches developed, White [39] has discussed the use of equidistributing 
the arclength of the solution; Pereyra and Sewell [40] have equidistributed the local 
truncation error and Pearson [41] has chosen to equalize the change in the discrete 
solution between consecutive mesh points. Other methods for choosing appropriate 
meshes for two-point boundary value problems have been investigated, for example, 
by Russell and Christiansen 1421, Ablow and Schecter [43], de Rivas 1441, and 
Denny and Landis 1451. (For an excellent survey on this subject, see Russell (621). 

Following the notation of Kautsky and Nichols, we say that the mesh .H is 
equidistributed on (0, L] with respect to the nonnegative weight function f and the 
constant K if 

I 
XJ + I 

j- dx=K, j = 0, 1 )..., M - 1. (4.10) 
xi 

Similarly, J? is called sub-equidistributing on [O, L] with respect to f and K if 

-Xj+ I 

I 
f dx<K, j = 0, 1 )..., M - 1. 

‘Xi 
(4.11) 

For convenience, we shall refer to f as being equidistributed in (4.10) and sub- 
equidistributed in (4.11). 

Our experience with the various equidistribution techniques indicates that while 
they may all be viable mesh selection procedures in theory, some are to be preferred 
over others in practice. We have found that, as the size of a two-point boundary value 
problem increases and/or the problem becomes more nonlinear, the selection of a 
mesh by attempting to equidistribute a nonnegative weight function over a given 
interval through an implicit change of variables becomes less practical than by 
attempting to sub-equidistribute a nonnegative weight function over a given interval 
by explicitly using the numerical solution on the given grid. For example, we have 
applied arclength and boundary layer coordinate transformations to several test 
problems. Although these methods worked for a number of simple scalar problems, 
as the size and the degree of complexity of the problems grew, we needed better and 
better starting estimates to obtain converged numerical solutions. In fact, we could 
never generate a converged numerical solution to the premixed flame equations using 
the arclength transformation, even when the problem was first solved on nonuniform 
grids with 25 to 50 grid points and then this solution became the initial solution 
estimate to the problem with the arclength transformation turned on-a two-pass 
solution method. 
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The approach we have chosen to determine an adaptive grid for the premixed flame 
problem is similar to the method used by Pearson [41] in solving scalar boundary 
layer problems. We attempt to sub-equidistribute the difference in the components of 
the discrete solution and the difference in the gradient of the components of the 
discrete solution between adjacent mesh points. Upon denoting the (N + 1) vector S 
such that 

S’ = [T, Y,, Yz,..., Y,v], (4.12) 

we seek to obtain a mesh .,H such that 

I dx G 6(oyf:,s I Sill, j = 0, l,..., M-l, i=l,2 ,..., N+l, (4.13) 
, , 

and 

where 6 and y are small numbers less than one and the values of max 1 Si/ and 
max ld,S,./dx/ are obtained from a converged numerical solution on a previously 
determined mesh. 

A potential disadvantage of such a procedure is the formation of a mesh which 
may not be smoothly varying. For example, the ratio of consecutive mesh intervals 
may differ by several orders of magnitude. This can affect the convergence properties 
as well as the accuracy of the method. As a result, we impose the added constraint 
that the mesh produced by employing the restrictions in Eq. (4.13) and (4.14) be 
locally bounded, i.e., the ratio of adjacent mesh intervals must be bounded above and 
below by constants. We require that 

l/C < hj/hj- I< C, j = 2, 3 ,... , M, (4.15) 

where C is a constant >l. Such a buffering of the mesh tends to smooth out rapid 
changes in the size of the mesh intervals. 

In our adaptive mesh algorithm, we first solve the flame equations on a coarse 
mesh (4 to 5 subintervals). The maximum values of 1 Si 1 and I dS,/dxI are then 
obtained. We next test the inequalities in Eqs. (4.13) and (4.14) for each of the N + 1 
components (or N if we are only solving the species equations) of S at the nodes of 
the coarse mesh. If either of the inequalities is not satisfied, a grid point is inserted at 
the midpoint of the interval in question. Once a new mesh has been obtained, we 
check to see whether it is locally bounded. If it is not, a grid point is inserted at the 
midpoint of the intervals in which the inequality in Eq. (4.15) is not satisfied. The 
previously converged numerical solution is interpolated onto this new mesh and the 
result serves as an initial solution estimate for Newton’s method on this liner grid. 
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The flame equations are solved on the new mesh and the process continues until the 
inequalities in Eqs. (4.13E(4.15) are satisfied. 

We remark that if we had refined the mesh by using only the inequality in Eq. 
(4.13), we would have been able to resolve high gradient regions but we would have 
had difficulty in resolving the wings and the peaks of spikelike solution profiles. 
These are typically regions in which the solution components exhibit high curvature. 
The test in Eq. (4.14) is designed to reline the mesh in these regions. 

Computational Considerations 

Before concluding this section, it is worthwhile to discuss a few points concerning 
the numerical implementation of the method. 

Numerical Jacobian 

With the difference approximations we have chosen to employ, the energy and 
species equations at an interior node j only contain references to the temperature and 
species at nodes j - 1, j, and j + 1. (The boundary conditions contain references to 
only one adjacent node). As a result, the Jacobian matrix in Eq. (4.8) can be written 
in block tridiagonal form. Although we considered evaluating the Jacobian 
analytically, we found that in problems characterized by complicated transport coef- 
ficients and complex chemistry, such a procedure was not very efficient. As a result, 
we evaluate all the Jacobians by a numerical finite difference procedure. If we denote 
the dependent solution vector by Z, then the ijth element of the Jacobian matrix 
Jij(Z) = aF,/aZ, can be approximated by the relation 

J.,(Z) = 3 = Fi(Z + SZjZj> -Fi(Z) 

V aZj szj ’ 
(4.16) 

where Zj is thejth column of the identity matrix and SZj is a small perturbation of the 
jth component of the vector Z. For our problems, we let 

SZj = OlZj + /3, (4.17) 

where a and /I are typically both taken to be the square root of the unit round-off 
error for the machine on which we are computing. As we mentioned earlier, the cost 
of evaluating the Jacobian and hence the function F is very high. As a result, we 
would like to minimize the total number of function evaluations required to estimate 
the Jacobian matrix. Curtis, Powell, and Reid [46] have discussed such a method. 
The procedure they outline takes advantage of the zero-nonzero structure of the 
Jacobian. For our problem, we can compute several columns of the Jacobian 
simultaneously by first evaluating F at some vector Z. We then perturb every 3Nth 
element of Z (as in Eq. (4.17)) beginning with the first. The function is evaluated at 
this new point and the appropriate difference quotient is formed. The procedure is 
repeated beginning with the second element of Z and the cycle is continued until the 
first 3N elements of Z have been perturbed. In particular, if we denote the kth column 
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of J by J,, then for a fixed i, i = 1, 2 ,..., 3N, the columns i + 3Nj, j = 0, l,..., il;fi, can 
be calculated by evaluating .Gi 

Ji+jNj= Z + “ aZi+JNkZi+ J,V~ 
k:O 

(4.18) 

where i@, is the largest integer such that 1 + 3Nai ,< MN. As a result, we can form 
the entire numerical Jacobian in 3N + 1 vector function evaluations. Once the 
Jacobian is formed, a block tridiagonal set of linear equations must be solved. We use 
the block tridiagonal routines DECBT and SOLBT written by Hindmarsh 1471. 

Scaling 

In problems of interest, the maximum values of the temperature and the mass 
fractions of the species under investigation typically range over several orders of 
magnitude. In particular, there are problems in which the ratio of maxo,,<, T/ 
min IC~QV(~~XOGGL Yi) may be larger than 10”. Problems of this type are said to be 
poorly scaled. This can result in an unsuitable choice of pivots in the Newton 
equations (4.8) or (4.9) with possible disastrous effects on the accuracy of the 
computed solutions. We have chosen to scale the mass fractions of the species under 
investigation by the maximum value they can attain in a given calculation. The new 
mass fractions pi are given by 

Pi = Yj/Yi,max3 i = 1, 2 ,..., N, (4.19) 

where the Yi,max are obtained by experiment or from previously computed numerical 
results. 

Damping and Convergence 

The choice of the damping parameter A’ to ensure monotonic convergence of the 
full Newton iteration (4.8) has been studied in depth by Deuflhard (481. We have 
implemented a variation of his method for nonsingular Jacobians. As it turns out, 
however, with the exception of the first couple of iterations on the initial mesh, we 
almost always take full Newton steps on each refined grid. We terminate the Newton 
iteration when 

/ldZ”+‘112=IIZ”+‘-Z”112~TOL, n = 0, 1, 2,. . ., (4.20) 

where we typically take TOL < lo-‘. 

Initial Estimates 

Of critical importance to the success of the boundary value method we outlined 
above is the ability to obtain an initial solution estimate which lies in the domain of 
convergence of Newton’s method. Although we have already discussed the use of one- 
sided difference expressions and coarse mesh Newton iterations in increasing the 
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likelihood of obtaining a converged numerical solution for a given starting estimate, 
we only briefly mentioned the actual choice of our initial solution profiles--S-shaped 
and Gaussian. To generate these profiles we require an estimate of the center and the 
width of the flame zone. The minor species (intermediates) are then fitted by 
Gaussian curves which are centered at the middle of the flame zone and which are 
equal to 10% of the specified peak values at the boundaries of the flame zone. The 
major species (reactants and products), on the other hand, are given specified values 
both before and after the flame zone. Inside this region they are fitted to cubic 
polynomials such that the profiles have zero slope and interpolate the input values at 
the boundaries of the region. 

Constitutive Relations 

In calculating the binary diffusion coefficients, the single component conductivities, 
and the thermal diffusion coefficients, collision integrals must be evaluated. Rather 
than perform a numerical quadrature, we have approximated the necessary collision 
integrals by polynomial fits to the tabulated data of Monchick and Mason [49]. The 
degree of the polynomials was chosen to guarantee at most a 1% deviation from the 
tabulated data in [49]. Thermodynamic properties (heat capacities, entropies, and 
enthalpies) are computed from fits of the JANNAF data [50] used in the NASA 
chemical equilibrium code [51]. Stockmayer potentials are used throughout in 
evaluating transport properties, and the potential parameters are compiled from 
various tabulated sources (e.g., [29]). In our computations, all the chemical 
production rate terms, thermodynamic properties, and equation of state variables are 
evaluated using CHEMKIN, the chemical kinetics code package written by Kee et al. 
1521. 

5. NUMERICAL RESULTS 

This section discusses the results obtained by applying our method to several 
laboratory flames. 

Test Flames 

We have applied the boundary value method to a variety of laboratory flames. In 
the remainder of this section, we discuss the results of our calculations for premixed 
hydrogen-oxygen, methane-oxygen, and acetylene-oxygen flames, and we compare the 
results of our calculations with experimental data. In evaluating our results, we must 
consider several factors: First, how well the governing equations model the physical 
system we are investigating; second, the accuracy with which the numerical method 
solves the governing equations; and finally, how well the chemical reaction 
mechanism describes the evolution of the fuel/oxidizer system and the formation of 
the resulting intermediates and products. The form of the flame equations we are 
using is fairly standard. Solving the equations for a hydrogen-air test system by 
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several numerical methods has produced results which compare favorably with 
experimental data [53]. In addition, we have tested the boundary value method 
discussed above on a variety of two-point boundary test problems (e.g., [ 16, 541). In 
the cases considered, we have obtained good agreement between our numerical 
solution and the solutions obtained by other two-point boundary value solution 
methods. The reaction mechanism, however, is the largest source of uncertainty in 
numerical flame modelling. Many of the reaction paths, rate constants, and activation 
energies are not accurately known. As a result, we expect that our results should 
agree well with experiment only where the reaction paths are well understood and the 
rate constants are well known. The reaction mechanisms (see Appendix) used in the 
calculations have been included for completeness. They are all actively being studied 
and are not the definitive reaction set for the corresponding fuel/oxidizer systems. All 
the calculations were performed on the CRAY-I computer at Sandia National 
Laboratories. Livermore. 

Hydrogen-Oxygen Flame (HZ/O,) 

Eberius et al. [22] have experimentally studied a rich, low-pressure, hydrogen- 
oxygen flame. Table I lists the fuel/oxidizer content of the unburnt gases, the flow 
velocity, and the pressure. The species considered are given in Table II, and the 
reaction mechanism used in the calculation is given in Table VII in the Appendix. 

In an earlier section, we discussed solving the species equations with a specified 
temperature profile. We mentioned that if an experimental temperature profile was 
available, substituting this profile for the energy equation produces a solution of 
species Eqs. (3.2) (3.6), and (3.8), which is often a better representation of the 
chemistry actually occurring in the flame than if the species equations were solved 

TABLE I 

Hz/O, Flame Parameters 

Unburnt mixture 75 mole ‘XI Hz/25 mole ‘%I 0: 
Flow velocity (u) I78 cm/set 
Pressure (p) 10.6 torr 

TABLE II 

Species for HI/O, Flame 

Hz 0, 
H 0 
OH HO, 
H,O, H,O 
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FIG. 2. Experimental (0) and calculated (-) OH profiles for a hydrogen-oxygen flame studied 
experimentally by Eberius et al. 1221. The calculation was performed by replacing the energy equation 
with an extension (-) of experimental temperature results (A). 

coupled with the energy equation. We attributed this to the fact that in actual 
laboratory applications there are usually distributed heat losses and the temperature 
predicted by solving the full set of flame equations is not always a good represen- 
tation of the temperature actually obtained in the laboratory. To illustrate these ideas, 
we consider the OH and temperature profiles for the hydrogen-oxygen flame we are 
investigating. 

In Fig. 2 we show the experimental and calculated (-) OH profiles for the 
hydrogen-oxygen system. We also include the experimental temperature data. The 
line connecting the temperature points was obtained by a least-squares fit to the data. 
The line has been extended past 4 cm such that a zero temperature gradient is 
obtained as we approach 10 cm. The predicted OH profile agrees well with the data. 

In Fig. 3, however, we show the solution in which the energy equation is solved 

FIG. 3. Experimental (0, A) and calculated (-) OH and temperature profiles for a hydrogen- 
oxygen flame studied experimentally by Eberius et al. [22]. The calculation was performed by solving 
the energy and species equations together. 
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coupled with the species equations. The initial temperature profile is just the extended 
experimental temperature profile linearly interpolated to the initial coarse gird. In this 
case, the calculated OH concentration and the calculated temperature profile (-) are 
much higher than observed experimentally. This calculation illustrates two points. 
First, use of an experimental temperature profile instead of a solution to the energy 
equation can allow physically realistic chemical kinetic modelling of the flame; and 
second, the solution method presented above allows one to obtain a solution to the 
energy equation even when the initial guess is bad (compare Figs. 2 and 3). 

Both calculations were performed using a 10 cm interval with an initial grid 
consisting of five equally spaced subintervals. The calculation with the experimental 
temperature profile required 45 adaptively placed grid points in order to obtain three 
significant figures of accuracy in the numerical solution. The calculation in which the 
energy and species equations were solved together required 34 points to achieve the 
same degree of accuracy. A large number of the grid points for the two calculations 
were located in the flame zone, which for our purposes is defined as the region in 
which 

Tb + O.lAT, < T< Tb + 0.9AT,, (5.6) 

where 

AT,=T,,,-T,, (5.7) 

and Tmax denotes the peak temperature of the flame under investigation. 
For the first calculation, 22 of the 45 grid points were in the flame zone. The ratio 

of the largest to the smallest mesh interval-h,,Jh,in-was 64 while the ratio of the 
length of the integration inverval to the smallest mesh interval-L/h,,,---was 640. In 
the second calculation, 25 of the 34 grid points were in the flame zone with 
h,,,/h,i, = 128 and L/hmin = 1280. The grids for both calculations were relined a 
total of eight times after a converged numerical solution was obtained on the coarsest 
grid. The calculations were performed without thermal diffusion and the cross- 
sectional area of the flame was taken as constant. The first calculation took 20 
seconds of CPU time while the second took 33. 

Methane-Oxygen Flame (CHJO,) 

Peeters and Mahnen [55] have experimentally studied a lean, low-pressure 
methane-oxygen flame. Table III lists the fuel/oxidizer content of the unburnt gases, 

TABLE III 

CH,/O, Flame Parameters 

Unburnt mixture 9.5 mole % CHJ90.5 mole % 0, 
Flow velocity (u) 61 cm/set 
Pressure (p) 40 torr 
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TABLE IV 

Species for CH,/O, Flame 

H* 02 
H 0 
OH HO2 
H,O, HCO 
CH,O co 

co, CH, 
CH, 

the flow velocity, and the pressure. The species considered are given in Table IV and 
the reaction mechanism used in the calculation is identical to the one used by Tsat- 
saronis [6 1 ] in his work on methane-oxygen flames. It is given in Table VIII in the 
Appendix. 

Section 4 discussed the use of upwind differencing for the convective derivatives in 
Eqs. (3.1t(3.8). We noted that this type of difference approximation could signifi- 
cantly broaden the numerical solution profiles depending upon the size of p&,/2, 
j = 1, 2,..., M, compared to L/C, and/or pD,, k = 1, 2 ,..., M. In addition, we 
anticipated the broadening to be greater on a coarse mesh than on a fine one. In 
Fig. 4 are shown a family of curves representing the H, solution profile for the 
methane-oxygen system on successively finer grids. The solution on the coarsest grid 
(five subintervals) does not resolve the height of the peak and the profile is broadened 
due to numerical diffusion (compare the location of the peaks on the coarse and the 
fine grids). As the grid is relined, however, we secure better and better resolution of 
the H, peak, until a highly resolved solution is obtained. In Fig. 5 we show the results 
of a similar calculation for the CO profile. On a grid with 65 subintervals, excellent 
resolution of the solution profile is obtained. 

65 SUBINTERVALS 

SSUEINTERVALS 

%7----A 
HElGHT A&E THE Eli&R (CM) 

FIG. 4. Calculated H, profiles for a methane-oxygen flame studied experimentally by Peeters and 
Mahnen [53]. The curves represent the numerical solution on successively finer grids. 
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co 

i“( 

65 SUBINTERVALS 

15 SUEINTERVALS 

0 

HEIGHT AgOVE THE B&R (CM) 

FIG. 5. Calculated CO profiles for a methane-oxygen flame studied experimentally by Peeters and 
Mahnen 1531. The curves represent the numerical solution on successively finer grids. 

In Figs. 6-8, we compare the results of our calculation (solid lines) with the 
experimental profiles of Peeters and Mahnen. There is good agreement between the 
calculated and experimental profiles for CH,, O,, CO,, H,O, and CO. The 
agreement between the calculated and the experimental profiles for H and OH is not 
quite as good, but they differ by at most a fraction of a mole percent. We anticipate 
that with further study of the kinetics mechanism for this flame, we should be able to 
secure better agreement between the calculated and the experimental profiles for these 
species. 

The calculation was performed by replacing the energy equation with the 
experimental temperature profile extended out to 5 cm, much as was done in the 
hydrogen-oxygen system. A solution was sought on an interval of 5 cm with an initial 

00 

HEIGHT hOSOVE THE B”R*& (CM) 

FIG. 6. Experimental (0,O) and calculated (-) profiles of CH, and CO, for a methane-oxygen 
flame studied experimentally by Peeters and Mahnen [53]. The calculation was performed by replacing 
the energy equation with an extension (-) of experimental temperature results (A). 
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0, 

0.0 
HEIGHT h”,O”E THE BUiiER (CM) 

0 

FIG. 7. Experimental (El, 0, A) and calculated (-) profiles of O,, H,O, and CO for a methane- 
oxygen flame studied experimentally by Peeters and Mahnen [53]. 

grid consisting of five equally spaced subintervals. A total of 45 adaptively placed 
grid points were required to obtain three significant figures of accuracy; 24 of these 
points were in the flame zone. The value of hm.Jhmin was 64 and L//z,,,~, was 160. 
Seven mesh refinements were performed. The calculation took 41 seconds of CPU 
time and was performed without thermal diffusion and with a constant cross-sectional 
area. 

Acetylene-Oxygen Flame (C, H2/02) 

The final flame we want to discuss is a lean, low-pressure acetylene-oxygen flame 
studied experimentally by Eberius et al. [56]. The content of the unburnt gases, the 
flow velocity, and the pressure are listed in Table V. The species considered are given 
in Table VI. The reaction mechanism used in the calculation is listed in Table IX in 
the Appendix. 

HEIGHT ABOVE THE BURNER (CM) 

FIG. 8. Experimental (A, 0, 0) and calculated (-) profiles of OH, H,, and H for a methane- 
oxygen flame studied experimentally by Peeters and Mahnen 1531. 
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TABLE V 

C, H,/O, Flame Parameters 

95 

Unburnt mixture 3.0 mole % C,H,/97.0 mole %I O? 
Flow velocity (u) 78 cm/set 
Pressure (p) 10.6 torr 

TABLE VI 

Species for C2H2/0, Flame 

HI 0, CH,CO co 
H 0 co> C,HZ 
OH HO, C,H CH, 
H,O, H,O CH CH, 
HCO CH,O HCCO C>H, 

In Section 4, we mentioned that in recent years a variety of methods have been 
used to determine adaptive grids for two-point boundary value problems. The method 
we have implemented sub-equidistributes the difference in the components and the 
difference in the gradient of the components of the discrete solution between 
consecutive grid points. To illustrate the importance of adaptively placing grid points 
in the flame zone to the accuracy and effkiency of the flame calculation, we have 
performed several calculations for the acetylene-oxygen system using equally spaced 
grids and adaptively determined grids. In Fig. 9, we illustrate the molecular hydrogen 
profile for a series of calculations for 20, 40, 80, and 160 equally spaced points. We 

I I 164 SUBINTERVALS HZ 

zc 0 SOSUBINTERVALS 

; 0 ‘WSUBINTERVALS 

2: 
LL- 

2 
IO 

YI ZOSUBINTERVALS 

00 I.0 i.0 

HEIGHT ABOVE THE BURNER (CM) 

FIG. 9. Experimental (0) and calculated (-) H, profiles for an acetylene-oxygen flame studied 
experimentally by Eberius et al. [56]. The curves represent the numerical solution on 20, 40, 80, and 
160 equally spaced subintervals. 

581/48/lL7 
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41 SUBINTERVALS 

2 
0.0 1.0 

HEIGHT ABOVE THE El”R?& (CM) 
0 

FIG. 10. Experimental (U) and calculated (-) H, profile for an acetylene-oxygen flame studied 
experimentally by Eberius et al. 1561. The curve represents the numerical solution in which 4 1 adap- 
tively placed points were used. 

include the experimental data for reference. We secure not only a much smoother 
solution, but one which agrees better with the experimental data as we go to a finer 
and finer grid. 

In Fig. 10, we plot the molecular hydrogen profile for a calculation in which 41 
adaptively placed points were used to obtain three significant figures of accuracy in 
the solution. As one expects, the adaptive calculation secures a highly resolved 
species profile with far fewer points than is required using an equally spaced grid. In 
Figs. 11 and 12, we compare the results of the adaptive calculation with the 
experimental profiles of Eberius et al. (561. The calculation and experiment agree 
well, and we anticipate that with further study of the reaction mechanism we should 
be able to secure better agreement between the calculated and the experimental 
profiles. 

b.0 I.0 
HEIGHT ABOVE THE BURNER (CM) 

FIG. 11. Experimental (0, q ) and calculated (-) profiles of C,H, and CO for an acetylene-oxygen 
flame studied experimentally by Eberius et al. 1561. The calculation was performed by replacing the 
energy equation with an extension (-) of experimental temperature results (A). 



PREMIXED LAMINAR FLAMES 97 

x 
: 

Cl0 1.0 2.0 
HEIGHT ABOVE THE BURNER (CM) 

FIG. 12. Experimental (Cl, A) and calculated (-) profiles of H,O and CO, profiles for an 
acetylene-oxygen flame studied experimentally by Eberius ef al. 1561. 

The adaptive and equally spaced calculations were performed by replacing the 
energy equation with the experimental temperature profile extended out to 6 cm in a 
manner similar to that used in the hydrogen and methane systems. For both the 
adaptive and equally spaced calculations, a solution was sought on an interval of 6 
cm with an initial grid consisting of ten equally spaced subintervals. In the adaptive 
calculation, 19 of the 41 adaptively placed grid points were in the flame zone. The 
value of hma.Jhmin was 64 and L/h,i, was 640. The calculation took 276 second of 
CPU time and was performed with thermal diffusion and a constant cross-sectional 
area. 

To generate the equally spaced solution on 160 subintervals, we first obtained a 
solution on the initial ten subinterval grid. The number of mesh intervals was doubled 
and a solution was obtained on the new grid with 20 subintervals. The process was 
repeated for 40, 80, and 160 subintervals. The equally spaced calculation with 160 
subintervals took 585 seconds of CPU time and was performed with thermal 
diffusion and a constant cross-sectional area. 

Discussion 

The efficiency of a numerical method is, to a large extent, based upon the CPU 
time required to solve a given problem to a specified degree of accuracy. It is 
difficult, however, to make an accurate comparison of the efficiency of our steady 
state method and existing time-dependent solution methods. Differences in the 
complexity of the governing equations combined with differences in the transport 
algorithms and differences in the initialization and termination criteria make it 
difficult to perform such a comparison. The situation is complicated even more since 
a number of computers have been used in the various time-dependent calculations. 
Ideally, a standard test problem with a standard set of governing equations and a 
standard set of initialization and termination criteria should be used to test the 
various solution methods on a specified computer. While such a study is needed, it is 
not feasible for us at the current time. Instead, we take a more fundamental approach 
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and illustrate why the steady state method we have developed is more efficient than a 
class of time-dependent methods for solving premixed flame problems. 

In solving the premixed flame equations by time-dependent methods, the original 
nonlinear two-point boundary value problem is converted into a nonlinear parabolic 
mixed initial-boundary value problem. This is accomplished by adding a a(.)/& term 
to Eqs. (3.2) and (3.3) (initial conditions must also be specified). By discretizing the 
resulting equations and boundary conditions, much as was done in obtaining Eqs. 
(4.6), we can write the flame equations in the semi-discrete form 

with appropriate initial conditions. To solve this system of initial value problems, we 
advance the numerical solution from the initial point t, = 0 through time levels 
O=t,<t,<t,<*.. < tJ = Y, for some finite time X If for a continuous mapping 
g: [0,9-J + ~*(o, L), we define g” = g(t,), n = 0, 1, 2,..., J, then an approximation of 
aZ,/at at t = t,, , can be written in the form 

(5.9) 

where the time step r,+ , = t,, , -t,. If we incorporate Eq. (5.9) in Eq. (5.8) and 
evaluate F at Zi”, we obtain the implicit Euler formulation of the time-dependent 
flame equations 

<T(Z;+‘)=F(Z;:+‘)-((Z;+‘-Z;)/r,+,)=O, n > 0. (5.10) 

At each time level, therefore, we must solve a system of nonlinear equations. It turns 
out that many of the time-dependent solution methods employ some form of implicit 
time differencing (e.g., [6, 7, 10, 12, 571). For each of these methods, a system of 
nonlinear equations must also be solved at each time level. For a sufficiently good 
starting estimate, the system of nonlinear equations in (5.10) can be solved by 
Newton’s method. If we omit the subscript h, we have 

(J(z;:+l)-(I/z,+,))(z~,i; -z;+y=-.F(Z;:f’), n>O, k=O, 1,2 ,..., (5.11) 

where I is the identity matrix. We note that, in order to solve Eqs. (5.1 l), we must 

still form the steady state Jacobian matrix, J. The converged solution at the nth time 
step, however, provides an excellent starting guess to the solution at the (n + 1)st 
time level. The work per time step is similar to that for a steady state Newton 
iteration, but the timelike continuation of the numerical solution implies that the 
iteration strategy in Eqs. (5.10) and (5.11) will, in general, be less sensitive to the 
initial starting estimate than if Newton’s method were applied to Eq. (4.6). This 
ability to converge to a steady state solution from a starting estimate which may not 
lie in the domain of convergence of Newton’s method for Eq. (4.6), is the primary 
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reason for the widespread use of implicit time-dependent methods in solving premixed 
flame problems. In addition to the adaptive mesh capability we have developed, a 
major result of our work has been the ability to reduce the sensitivity of the Newton 
iteration to the initial starting estimate so that we can deal directly with Eq. (4.6). As 
a result, we can reliably solve the premixed flame equations without resorting to a 
time relaxation procedure. 

By comparing the number of iterations required to reach a steady state solution for 
the time-dependent method discussed above with the number of Newton iterations 
used in our steady state method, we can get a reasonable estimate (independent of the 
problem) of the relative efficiency of the two methods. In typical premixed flame 
calculations 200 to 500 time steps with two or three Newton iterations per step is not 
unusual 158, 591. In our steady state method, we average about six Newton iterations 
per grid with five to nine grids used in a typical calculation. Based upon these 
numbers it is reasonable to expect the steady state method to be faster by about a 
factor of 7 to 50 than the time-dependent method. In an efficient implementation of 
the time-dependent method, however, one does not recalculate the Jacobian at every 
Newton iteration, and a Jacobian is often used for several consecutive time steps. On 
the other hand, most of our steady state Newton iterations are performed on grids 
consisting of only a few grid points, and we also do not re-evaluate the Jacobian after 
every Newton iteration. We estimate that a factor of 5 to 10 is more realistic. 

The above analysis was designed to give a rough indication of the efficiency of our 
steady state method and a class of implicit time-dependent methods. We realize that 
time-dependent marching methods (e.g., [ 3, S]) and time-dependent implicit methods 
that employ high order time differencing schemes [lo] have also been used to 
calculate premixed flame structure. The above analysis does not apply directly to 
these methods. We point out, however, that, for stability reasons, much smaller time 
steps must be taken in explicit time-dependent calculations as opposed to implicit 
methods, though the cost of the step is less. In addition, although the higher order 
implicit time differencing methods may require fewer steps to reach a steady state. the 
cost per step is greater than the implicit Euler method discussed above. 

6. REMARKS 

The diffulties associated with obtaining good starting estimates and with being able 
to resolve the temperature and species profiles accurately in high gradient and high 
curvature regions have limited the use of steady state methods in calculating 
premixed flame structure. As a result, most of the papers in the literature which are 
concerned with the numerical solution of the premixed flame equations employ some 
type of time-dependent method. The slow relaxation of time-dependent methods to 
steady state can, however, make parameter studies employing complicated nonlinear 
transport properties and chemical kinetics extremely time consuming. Steady state 
methods, on the other hand, have the potential of solving the flame equations in much 
less time than time dependent methods. 
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In this paper, we have developed a steady state numerical method which reduces 
the sensitivity of the flame equations to the initial solution estimate, and we have also 
shown how to place grid points adaptively in regions where the dependent solution 
components are undergoing rapid change. The method employs a global finite 
difference technique in which the nonlinear difference equations are solved by a 
damped-modified Newton method. We use upwind difference expressions for the 
convective derivatives and an assumed temperature profile to help generate a 
converged numerical solution on an initial coarse grid. Mesh points are inserted in 
regions where the solution components and their gradients vary most rapidly. We 
have applied the method to the calculation of the temperature and/or species profiles 
for several laboratory flames, and we have obtained good agreement with experiment. 

APPENDIX 

In this section we tabulate the reaction mechanisms used in the three test 
calculations. 

TABLE VII 

Hz/O, Reaction Mechanism 157,601 

j Reaction 

6 
1 
8 
9 

10 

11 
12 

13 
14 
15 
16 
17 

H,+0,=20H 
OHtH,Z+H,OtH 
H+O,=OH+O 
O+H,=OH+H 
H+O,+M$HO,tM 

H, enhanced by 3.0 
H,O enhanced by 15.0 

OH+H0,=H20+0, 
H+HO,=OH+OH 
OtHO,=O,tOH 
20H=OtH,O 
H,tMZHtHtM 

Hz0 enhanced by 6.0 
H enhanced by 20.0 
H, enhanced by 3.0 

O,tMZ20tM 
HfOH+M=H,O+M 

H, 0 enhanced by 19.0 
H+H0,ZH,t02 
HO, t HO, Z H,O, t 0, 
H,O,tM=OHtOHtM 
H,O, t H X HO, t H, 
H,O, + OH = H,O t HO, 

1.7 x IOX 0.0 47780.0 
2.2 x 1o’j 0.0 5 140.0 

7.19 x lO1” -0.86 I 16523.0 
1.8 x 10’” 1.0 8826.0 
2.0 x 10’” 0.0 - 1000.0 

5.0 x IO” 0.0 1000.0 
2.5 x 10’” 0.0 1900.0 
4.8 x IO” 0.0 1000.0 
6.0 x 10’ 1.3 0.0 

2.23 x IO” 0.5 92600.0 

1.85 x 10” 
7.5 x 102’ 

2.5 x 10” 
2.0 x lo’] 
1.3 x 10” 
1.6 x IO’* 
1.0 x 10” 

0.5 95560.0 
-2.6 0.0 

0.0 700.0 
0.0 0.0 
0.0 45500.0 
0.0 3800.0 
0.0 1800.0 

Note. $=,4~~~e~‘~‘Rr (units are moles, cm’, set). 
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TABLE VIII 

CH,/O* Reaction Mechanism [6 11 

.i Reaction A j P: 

1 CH,+HY,CHJ+H, 2.24 x lo4 3.0 
2 CH,+OH=CH,+H,O 2.2 x 10’3 0.0 
3 CH,tO=CH,+OH 1.26 x lOI 0.0 
4 CH,+O=CH,O+H 2.0 x lOI 0.0 
5 CH,tO,S CH,O t OH 1.0 x 10” 0.0 
6 CH,O+H=HCO+H, 1.25 x 10’0 1.0 
1 CH,O t OH Z HCO t H,O 4.8 x 1O’j 0.0 
8 CH,OtOfHCO+OH 5.0 x 10’) 0.0 
9 CH,O+MfCOtH,tM 2.0 x 10’6 0.0 

10 HCOfHfCOtH, 2.0 x lOI 0.0 
11 HCOtOH=COtH,O 1.0 x lOI 0.0 
12 HCOtO=CO+OH 3.0 x IO” 1.0 
13 HCdtO,=COtHO, 3.0 x 10” 0.0 
14 HCO+M=COtHtM 5.0 x lo’* 0.0 
15 COtOH=CO,tH 2.5 x lOI 0.0 
16 CO+OtMLyCO,tM 3.6 x IO’* -1.0 
17 OHtH,=H,OtH 2.2 x 10” 0.0 
18 HtO,=OHtO 2.2 x lOi 0.0 
19 O+H,=OHtH 1.8 x 1o’O 1.0 
20 Ht02tM~H0,tM 1.4 x lOi 0.0 
21 HO,+H$OHtOH 2.0 x lOI 0.0 
22 HO,+H$H,OtO 5.0 x IO” 0.0 
23 HO,+HfH,+O, 6.0 x IO’” 0.0 
24 HO,tOHfH,O+O, 4.0 x 10” 0.0 
25 HO,tO!yOH+O, 6.0 x 10” 0.0 
26 HtOHtM$H,OtM 2.3 x 10z2 -2.0 
27 HtOtM=OH+M 6.2 x lOI -0.6 
28 OHtOH=H,OtO 6.3 x lOI 0.0 
29 HtHtM=H,tM 2.0 x 10’9 -1.0 

E; 
~_____ 

8800.0 
5000.0 

12000.0 
2000.0 

10000.0 
3200.0 

0.0 
4600.0 

38000.0 
0.0 
0.0 

500.0 
0.0 

19200.0 
5800.0 
2600.0 
5200.0 

16800.0 
9000.0 

-1000.0 
2000.0 
1000.0 
2000.0 

0.0 
0.0 
0.0 
0.0 

1100.0 
0.0 

Note. ti = AS& e mE$lRT (units are moles, cm ‘, set). J 
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TABLE IX 

C, HJO, Reaction Mechanism [ 60) 

.i Reaction 

1 C,H,+OfHCCO+H 
2 C,H,tO=CH,tCO 
3 C,H,tOHfCH,CO+H 
4 C,H,tHfC,HtH, 
5 C,H,tMSC,H,+H+M 
6 C,H,tHZC,H,tH, 
1 C,H, t 0 2 CH,CO t H 
8 C,H,tOHSC,H,+H,O 
9 CH,CO + OH Z CH,O t HCO 

10 CH,O+OHZHCO+H,O 
11 CH,O+H=HCO+H, 
12 CH,O+MZHCO+HtM 
13 CH,OtOLyHCO+OH 
14 HCOtOH=COtH,O 
15 HCOtM=H+COtM 
16 HCOtHfCO+H, 
17 HCOtO=OH+CO 
18 HCOtO,fHO,+CO 
19 CH,+O,=CO,tH, 
20 CH,tO,~HCO+OH 
21 CH,tO,=COtH,O 
22 CH,+O,=COtOH+H 
23 CH,tO,=HCO+OH 
24 COtO+M=CO,tM 
25 CO+OHfCO,+H 
26 COtO,~CO,tO 
21 C,H, + OH = C,H t H,O 
28 C,H, t O,‘C,H t OH 
29 C,HtO,ZHCOtCO 
30 CH,tO$CHtOH 
31 CH,+O?,CO+H+H 
32 CH,+OfCO+H, 
33 CH,tH=CHtH, 
34 CH,+OH=CH+H,O 
35 CHtO,=HCOtO 
36 CH3t0,=CH,0tOH 
37 CH,tO=CH,OtH 
38 CH,+OH=CH,OtH, 
39 CH,CO+MZCH,+COtM 
40 C,H,tO,~CH,COtO 

5.0 x 1012 
1.5 x IO” 
3.2 x lOI* 
2.0 x 10’4 

7.94 x 10’4 
8.0 x lOI* 
1.0 x 101” 
5.0 x lo’* 
2.8 x 10” 

7.53 x 10’2 
3.31 x 10’4 
3.31 x lOI6 
1.81 x 1O’j 
5.0 x 10’2 
1.6 x lOI 
4.0 x 10’3 
1.0 x 10’) 
3.0 x 1o1* 
1.0 x IO” 

2.86 x 10” 
2.0 x IO” 
2.0 x 10” 
1.0 x IO” 
3.2 x lo’-’ 

1.26 x 10’ 

6:3 1 6 x x 10” lOI 
3.16 x IO” 

1.0 x 10’” 
2.0 x IO” 
3.9 x 10’3 
3.9 x 10’3 

2.51 x IO” 
2.5 x 10” 
1.0 x 1o’j 
1.2 x 10” 
6.8 x 10” 
7.5 x lOI1 
1.0 x 10” 
1.0 x lOI 

0.0 3200.0 
0.0 3200.0 
0.0 200.0 
0.0 19000.0 
0.0 3 1500.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 167.0 
0.0 10500.0 
0.0 8 1000.0 
0.0 3082.0 
0.0 0.0 
0.0 14700.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 2000.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 
0.0 -4200.0 
1.3 -800.0 
0.0 41000.0 
0.0 7000.0 
0.6 15000.0 
0.0 7000.0 
0.68 25000.0 
0.0 0.0 
0.0 0.0 
0.67 25700.0 
0.67 25700.0 
0.0 0.0 
0.0 9930.0 
0.0 0.0 
0.0 0.0 
0.0 60000.0 
0.0 19000.0 

Table continued 
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TABLE IX (continued) 

.i Reaction A$ 

41 C,H,+MZC,H+H+M 4.15 x 10’6 0.0 53850.0 
42 CH,CO + 0 = HCCO + OH 5.0 x lo’* 0.0 0.0 
43 CH,CO t OH = HCCO + H,O 3.0 x IO’j 0.0 0.0 
44 CH,CO + H = HCCO t H, 5.0 x lo’* 0.0 0.0 
45 HCCO+O=HCO+CO 5.0 x lOI 0.0 0.0 
46 HCCOtOH=CH,OtCO 2.0 x lo’* 0.0 10000.0 
47 HCCOtOH=HCO+H+CO 5.0 x 1o1* 0.0 0.0 
48 HCCO+H=CH,+CO 5.0 x 10” 0.0 0.0 
49 HCCO+O,=CO,+CO+H 1.0 x lOI 0.0 5000.0 
50 0,tHCCO~OHtCOtCO 2.0 x lOI 0.0 10000.0 
51 O+HCCO=HtCO+CO 1.2 x 10” 0.0 0.0 
52 OH + C,H, = CH, t CO 5.5 x 10” 0.0 13 700.0 
53 HO,tCO=CO,tOH 1.0 x Io’J 0.0 23000.0 
54 H,+0,=20H 1.7 x 10” 0.0 47780.0 
55 H,tOHY,H,OtH 5.2 x 1O’j 0.0 6500.0 
56 HtO,=OHtO 7.16 x 10’” -0.861 16523.0 
57 OtH,=OH+H 1.8 x 10’” 1.0 8826.0 
58 HtO,tMZHO,tM 2.1 x 10’” -1.0 0.0 

59 
60 
61 
62 
63 

H,O enhanced by 19.0 
OH + HO, = H,O t 0, 
H i-HO,=20H 
OtHO,=O,tOH 
20HZ,0tHZ0 
H,tMSHtHtM 

H,O enhanced by 6.0 
H enhanced by 2.0 
H, enhanced by 3.0 

0,tMZOtOtM 
HtOHtM%H,O+M 
H+HO,=HZ+O, 
HO, t HO, Z H,O, t 0, 
H,OztM=OH+OHtM 
H,O,+HZHO,tH, 
H,O, + OH = H,O t HO, 

5.0 x 10” 0.0 1000.0 
2.5 x lOI 0.0 1900.0 
4.8 x 10” 0.0 1000.0 
6.0 x lo* 1.3 0.0 

2.23 x lOI’ 0.5 92600.0 

64 
65 
66 
6-l 
68 
69 
10 

1.85 x 10” 0.5 95560.0 
7.5 x lo*” -2.6 0.0 
2.5 x IO” 0.0 700.0 
2.0 x 10” 0.0 0.0 
1.3 x 10” 0.0 45500.0 
1.6 x lOI* 0.0 3800.0 
1.0 x lOI 0.0 1800.0 

Note. ti= A~T~!e~‘~IR’ (units are moles, cm’, set). i 
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